
ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

Specifying and Checking Java using
CSP

Michael Möller

University of Oldenburg, Germany

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.1/16

ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

Content

➠ Why CSP?

➠ CSP-OZ to Java

➠ jassda

➠ Differences to CSPM

➠ Conclusion and Future Work

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.2/16

➧ ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

Why CSP?

➠ Project ForMooS: Formal Methods in object
oriented Software Engineering

➠ base: CSP-OZ [C. Fischer 2000]

➟ Communicating Sequential Processes
[Hoare ’85] +

➟ Object-Z [Smith 2000]

➠ goal: UML (subset) → CSP-OZ → Java

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.3/16

➧ ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

CSP-OZ-Classes

➠ The three parts of a CSP-OZ-Class:
1. Interface
2. dynamical behaviour: CSP-Process
3. State space and state transformation: Z-Part

➠ goal: map every part to the implementation

1. Java - Interface
2. Trace Assertions
3. Design-by-Contract, BISL

skip CSP-OZ

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.4/16

➧ ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

CSP-OZ-Classes

➠ The three parts of a CSP-OZ-Class:
1. Interface
2. dynamical behaviour: CSP-Process
3. State space and state transformation: Z-Part

➠ goal: map every part to the implementation
1. Java - Interface

2. Trace Assertions
3. Design-by-Contract, BISL

skip CSP-OZ

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.4/16

➧ ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

CSP-OZ-Classes

➠ The three parts of a CSP-OZ-Class:
1. Interface
2. dynamical behaviour: CSP-Process
3. State space and state transformation: Z-Part

➠ goal: map every part to the implementation
1. Java - Interface

2. Trace Assertions

3. Design-by-Contract, BISL

skip CSP-OZ

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.4/16

➧ ForMooS ❘ jassda ❘ CSP dialect ❘ Conclusion

CSP-OZ-Classes

➠ The three parts of a CSP-OZ-Class:
1. Interface
2. dynamical behaviour: CSP-Process
3. State space and state transformation: Z-Part

➠ goal: map every part to the implementation
1. Java - Interface
2. Trace Assertions
3. Design-by-Contract, BISL

skip CSP-OZ

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.4/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

jassda Overview

➠ Jass: Java with assertions

➠ jassda: Jass Debug Architecture

➠ Debug on Byte-code level

➠ modular structure (framework for debugging)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.5/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

jassda Architecture

Logger Trace-Checker ...

GUI Broker
other core

components ...

JVM
Debuggee 1

JVM
Debuggee 2

...

ja
s
s
d

a

c
o
re

m
o
d
u
le

s

JPDA

CSPjassda

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.6/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Serialised Event Stream

➠ Using JDI means getting a serialised stream of
events.

➠ serialised stream = trace

➠ CSP trace semantics
➟ check: (trace of current run) ∈ CSP trace

semantics
➟ “checking operational”:

do not expand the trace semantics
describe further trace(s) by processes (for every
step)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.7/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Events

Possible events: Everything that can stop the VM via JDI.
CSPjassda basic events: (analogous to Design by Contract
clauses

➠ Method entry point begin

➠ Normal method termination end

➠ Exceptional method termination exception

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.8/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Event Properties

➠ Virtual Machine (Debugee)

➠ JDI

➠ thread

➠ class

➠ instance

➠ method

➠ method arguments

➠ result
(with simple modification of the byte code)

Filtering of events through properties by Java classes

(handler class)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.9/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Event Properties

➠ Virtual Machine (Debugee)

➠ thread

➠ class

➠ instance

➠ method

➠ method arguments

➠ result
(with simple modification of the byte code)

Filtering of events through properties by Java classes

(handler class)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.9/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Event Properties

➠ Virtual Machine (Debugee)

➠ thread

➠ class

➠ instance

➠ method

➠ method arguments

➠ result
(with simple modification of the byte code)

Filtering of events through properties by Java classes

(handler class)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.9/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Event Properties

➠ Virtual Machine (Debugee)

➠ thread

➠ class

➠ instance

➠ method

➠ method arguments

➠ result
(with simple modification of the byte code)

Filtering of events through properties by Java classes

(handler class)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.9/16

ForMooS ❘ ➧ jassda ❘ CSP dialect ❘ Conclusion

Event Properties

➠ Virtual Machine (Debugee)

➠ thread

➠ class

➠ instance

➠ method

➠ method arguments

➠ result
(with simple modification of the byte code)

Filtering of events through properties by Java classes

(handler class)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.9/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Event Sets

➠ Exactly one event is not very handy (how to define
e.g. the thread?)

➠ Prefix operator: “eventset → Process”
(current event)∈ eventset

➠ definition of event sets

eventset myset = { handler="..."
debuggee="..." thread="..." ... }

(default property for handler and predefined event sets)

➠ operations on sets: intersection, union

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.10/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Event Sets

➠ Exactly one event is not very handy (how to define
e.g. the thread?)

➠ Prefix operator: “eventset → Process”
(current event)∈ eventset

➠ definition of event sets

eventset myset = { handler="..."
debuggee="..." thread="..." ... }

(default property for handler and predefined event sets)

➠ operations on sets: intersection, union

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.10/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Event Sets

➠ Exactly one event is not very handy (how to define
e.g. the thread?)

➠ Prefix operator: “eventset → Process”
(current event)∈ eventset

➠ definition of event sets

eventset myset = { handler="..."
debuggee="..." thread="..." ... }

(default property for handler and predefined event sets)

➠ operations on sets: intersection, union

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.10/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Event Sets

➠ Exactly one event is not very handy (how to define
e.g. the thread?)

➠ Prefix operator: “eventset → Process”
(current event)∈ eventset

➠ definition of event sets

eventset myset = { handler="..."
debuggee="..." thread="..." ... }

(default property for handler and predefined event sets)

➠ operations on sets: intersection, union

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.10/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Binding Variables (2)

Binding event set variables similar to communication via
channels in CSPM:

➠ Communication in CSPM:

main = in?x -> out!x -> main

➠ Variable binding in CSPjassda:

main() { in?x:[arg0] -> out!x -> main() }

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.11/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Binding Variables (2)

Binding event set variables similar to communication via
channels in CSPM:

➠ Communication in CSPM:

main = in?x -> out!x -> main

➠ Variable binding in CSPjassda:

main() { in?x:[arg0] -> out!x -> main() }

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.11/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Binding Variables (2)

Binding event set variables similar to communication via
channels in CSPM:

➠ Communication in CSPM:

main = in?x -> out!x -> main

➠ Variable binding in CSPjassda:

main() { in?x:[arg0] -> out!x -> main() }

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.11/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Binding Variables (2)

Binding event set variables similar to communication via
channels in CSPM:

➠ Communication in CSPM:

main = in?x -> out!x -> main

➠ Variable binding in CSPjassda:

main() { in?x:[arg0] -> out!x -> main() }

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.11/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (1)

➠ Internal Choice (CSPM)

a → P u b → Q

➠ operational: nondeterministic choice

➠ may reject a or b (without external influence)

➠ for testing: program never satisfies Spec

➠ so: use trace semantics

traces(a → P u b → Q) = traces(a → P 2 b → Q)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.12/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (1)

➠ Internal Choice (CSPM)

a → P u b → Q

➠ operational: nondeterministic choice

➠ may reject a or b (without external influence)

➠ for testing: program never satisfies Spec

➠ so: use trace semantics

traces(a → P u b → Q) = traces(a → P 2 b → Q)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.12/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (1)

➠ Internal Choice (CSPM)

a → P u b → Q

➠ operational: nondeterministic choice

➠ may reject a or b (without external influence)

➠ for testing: program never satisfies Spec

➠ so: use trace semantics

traces(a → P u b → Q) = traces(a → P 2 b → Q)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.12/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (1)

➠ Internal Choice (CSPM)

a → P u b → Q

➠ operational: nondeterministic choice

➠ may reject a or b (without external influence)

➠ for testing: program never satisfies Spec

➠ so: use trace semantics

traces(a → P u b → Q) = traces(a → P 2 b → Q)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.12/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (1)

➠ Internal Choice (CSPM)

a → P u b → Q

➠ operational: nondeterministic choice

➠ may reject a or b (without external influence)

➠ for testing: program never satisfies Spec

➠ so: use trace semantics

traces(a → P u b → Q) = traces(a → P 2 b → Q)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.12/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:
➟ Spec

α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:
➟ Spec

α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:
➟ Spec

α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:

➟ Spec
α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:
➟ Spec

α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:
➟ Spec

α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Determinism (2)

➠ Nondeterministic Choice (CSPM)

Spec = a → P 2 a → Q

➠ nondeterministic: Spec
a
→ P or Spec

a
→ Q

➠ Delayed Choice (CSPjassda)

Spec = a → P 2 b → Q

➠ deterministic:
➟ Spec

α
→ P if α ∈ (a\b)

➟ Spec
α
→ Q if α ∈ (b\a)

➟ Spec
α
→ P 2 Q if α ∈ (a∩b)

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.13/16

ForMooS ❘ jassda ❘ ➧ CSP dialect ❘ Conclusion

Hello World

eventset helloWorld
{ handler="jass.debugger.jdi.eventset.GenericSet",
class ="HelloWorld" }

eventset start { eventtype="begin" method="start"}
eventset stop { eventtype="begin" method="stop"}

main() {
||x:[instance] @ helloWorldProc(x)

}
helloWorldProc(x) {
helloWorld.start.x ->

helloWorld.stop.x -> helloWorldProc(x)
}

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.14/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:

➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable
➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs

➟ addition to Design by Contract (not a
replacement)

➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable
➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)

➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable
➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable
➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:

➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable
➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level

➟ third party products checkable (without
source-code)

➟ Java applications, applets and servlets
checkable

➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)

➟ Java applications, applets and servlets
checkable

➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable

➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Conclusion

➠ CSPjassda:
➟ specifying dynamic behaviour of Java programs
➟ addition to Design by Contract (not a

replacement)
➟ extendable through handler classes

➠ jassda tool:
➟ operates on Byte-code level
➟ third party products checkable (without

source-code)
➟ Java applications, applets and servlets

checkable
➟ extendable through modular structure

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.15/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda
➟ performance
➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda
➟ performance
➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda

➟ performance
➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda
➟ performance

➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda
➟ performance
➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda
➟ performance
➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

ForMooS ❘ jassda ❘ CSP dialect ❘ ➧ Conclusion

Future Work

➠ translation: CSP-OZ → CSPjassda

(tool supported)

➠ improve CSPjassda

➠ improve jassda
➟ performance
➟ usability of GUI

➠ case studies: expressiveness of CSPjassda,
scalability and overhead of debug architecture

Many thanks to Mark Brörkens

Specifying and Checking Java using CSP - FTfJP’02, Málaga, Spain – p.16/16

	Content
	Why CSP?
	CSP-OZ-Classes
	jassda Overview
	jassda Architecture
	Serialised Event Stream
	Events
	Event Properties
	Event Sets
	Binding Variables (2)
	Determinism (1)
	Determinism (2)
	Hello World
	Conclusion
	Future Work

